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The results shown in the figure are the best obtained for

these particular designs. Discrepancy between theory and

e~periment is expected because i) the theory does not

account for loss, ii) the method of obtaining the experi-

mental eigenvalues from the measurements assumes there

is no loss, and iii) only a finite number of modes is

included (e.g., for XO for the 2-port with a disk, K= 2,

M= 4 means that the azimuthal spatial frequencies

accounted for are O, *2, t 4 ( = ~ gK), and in the z-direc-

tion modes with up to four half-wavelengths are in-

cluded). However, the correlation is very good.

For the 2-port case it is seen that the disk has a greater

influence on& than on Al. This is to be expected since the

disk is of small radius and the stationary (for &) and the

rotating (for Al) junction modes have high and low electric

fields near the junction center. For the 3-port the disk has

little effect on ~. This suggests the edge of the disk is in a

region of low electric field. Indeed, the disk and no-disk

cases give the same result at 11 GHz and it is found that

the first root of YO(O% r) gives the result r = 10.4 mm:

the disk radius is 10.0 mm. For the rotating junction made

the dominant field mode Bessel function, Y,, is near a

maximum for the whole frequency band at the disk edge.

This means that the electric field is high and, therefore, a

high value of M is required for accurate results. It is,

therefore, not surprising that errors as large as 22° occur

in this case. Also, this particular eigenvalue is degenerate,

i.e., Al= & and numerical errors are expected in such

cases [1], although the results for the case of no-disk are

very good.

IX. CONCLUSIONS

An exact three-dimensional field theory has been for-

mulated for a class of cyclic H-plane waveguide junction,

and a small number of designs have been briefly

evaluated to test the theory. The accuracy of the results is

very good, thus indicating the theory is valid and has been

programmed correctly. The problem solved here has in-

volved the organization of a large number of linear simul-

taneous equations with the aid of matrix notation. The

inclusion of extra dielectric or ferrite regions can be

achieved by defining the appropriate matrices and includ-

ing them in the matrix product occurring in the theory.

Additional metal disks can also be included by introduc-

ing the appropriate matrices. Thus the method developed

in this paper represents a principle for dealing with a

multistep pedestal, multidielectric, multiferrite-loaded

junction, with or without a central metal pin.
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On the Modeling of the Edge-Guided Mode
Stripline Isolators

SALVADOR H. TALISA, MEMBER, IEEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstnrct-A model for the inbomogeneously ferrite-loaded mfcreatrfp

and stripline is considered. The ShIIChUe COOSiStSof a loaded ferrite shb

between two iofiit% perfectly conducting planes with tfre bias magnetiza-

tion perpendicular to the ground planes. The ferrite is taken to be Inssy

and is loaded on one side by a semf-infibdte Ioasy nraterbd and on the other

by a dielectric slab. The modal spectrum of this confQuration as weff as

the influence on the M and ~(1 diagrams of the mrfous paromters

involved are studfed. Speciaf attention has been paid to the capabtities of
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this configuration to model a noorecfpromf isolator. A hypotbeticaf isolator
is &sign@ and its characteristics are mmpared with experimental reardta

obtained by libr~ Dydykj and Courtois. Srrbstantbd agreement fs ob-

served.

1. INTRODUCTION

A N INVESTIGATION of edge-guided waves propa-

gating in ferrite-loaded strip and microstriplines

magnetized perpendicular to the ground plane was ini-

tiated by Hines [ 1]–[3] in the late 1960’s. Hines deduced

that the dominant mode propagating through such struc-
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tures resembled a TEM mode. Furthermore, a strong field

displacement effect was obsemed, through which the

propagated wave energy concentrates along one of the

edges of the transmission line.
For a sufficiently wide conducting strip, the problem

was approached analytically [2] by neglecting the effect of

the fringing fields as a first approximation. Thus a vertical

perfect magnetic wall boundary condition could be im-

posed at the edges of the conducting strip. The nonre-

ciprocal transverse field displacement effect was enhanced

by asymmetrically loading the edges of the transmission

line. Experimental prototypes for isolators, phase-shifters

[1], [2], and circulators [3] were developed.

The potential which the edge-guided waves offered for

the development of broad-band ferrite substrate microw-

ave integrated-circuit components induced several re-

searchers in Europe, Japan, and America to engage in the

task of achieving a more complete understanding of these

modes and their possible applications.

Workers like Courtois and deSqntis at first approached

the study of the edge-guided mode through the analysis of

the related surface waves in simple geometries such as a

ferrite–dielectric interface [4], [5], with the bias magnetiza-

tion parallel to the interface and normal to the propaga-

tion direction. It was then discovered that two different

unidirectional surface modes could propagate through

such a structure according to the direction of propagation

(or the sign of the dc magnetizing field), i.e., the dynamic

and magnetostatic modes, respectively. The latter can

only propagate at those frequencies for which the ferrite

effective permeability Peff is negative (y ~ < u <yll ).

However, the dynamic mode has the same lower cutoff as

the magnetostatic mode (u= y - ) but extends beyond

the frequency for which peff becomes positive, up to the

point where, on the dispersion diagram, it intersects the

curve oti= , where Cf is the relative permittivity of

the ferrite.

Analyses of different models which successively ap-

proach actual ferrite-loaded microstrip and stripline struc-

tures followed. Good examples of this can be found in the

work by Courtois et az. [6], [7], deSantis [8]–[ 10], and Belle

[11]-[15]. In passing from the ferrite half-space model to a

finite-width ferrite slab in a dielectric medium or a ferrite

slab between perfect magnetic walls, the unidirectional

surface waves transformed into surface modes displaying

a nonreciprocal transverse field displacement effect. It
was found that for the dynamic and magnetostatic modes,

the energy is concentrated near opposite faces of the

ferrite slab for the same direction of propagation.

With regard to specific edge-guided mode devices, the

work on isolators by Courtois [ 16]–[ 18] and Dydyk [19] is

of particular interest to us. The model basic to this study

consists of a ferrite slab, sided by dielectric, between two
infinite perfectly conducting planes. The magnetization

was taken to be normal to the ground planes. The effect

of the fringing fields in an actual microstrip or stripline

structure, therefore, is neglected.

The analysis of such a configuration is extended to

l_lY Ho
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77/////////
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Fig. 1. Canonical stripline geometry for the semi-infinite lossy region
model.

include either a semi-infinite lossy medium or a lossy film

interspersed between one side of the ferrite slab and the

dielectric region, while on the other side a dielectric slab is

placed whose permittivity differs from that of the
surrounding medium. An exact solution of the mt )del

containing a semi-infinite lossy region will be treated here

(Fig. 1). The results for the resistive film will be. reported

in a forthcoming publication.

The presence of losses implies not only a quantitative

complication but also a mathematical one, for now the

dispersion relation and the field expressions are complex

functions of a complex variable, i.e., the propagal,ion

constant. Thus the main difficulty which appears in the

treatment of these problems is the detection and dis-

tinguishing between the propagation constants of different

modes which arise out of the dispersion relations.

These relations are somewhat complicated transcenden-

tal equations and can only be solved using numerical

methods. Thus a special subroutine (ZSYSTM) from the

IMSL library [20] employing Brown’s method [21], [22]

was used. Whenever convergence was difficult to achieve,

an electronic plotter was used to visualize the form of the

dispersion relation, so as to choose suitable starting vallues

for the iterative loop. Results are obtained which show the

forward and reverse dispersion characteristics for different

values of the various parameters involved.

Special attention has been paid to the dynamic and

magnetostatic modes as well as to the first higher order

mode. The results obtained reflect on the utility which this

structure may have in modeling nonreciprocal broad-band

isolators using the field displacement effect. In this re-

spect, an optimum design of an isolator is attempted, and

its characteristics are compared with the experimental

results obtained by Hines [2], Forterre et al. [17], and

Dydyk [19]. Overall agreement is obtained. Some dif-
ferences between our dispersion diagrams and thost> re-

ported by Forterre in [17] concerning the forms of the

dynamic and first higher order modes are also discussed.

II. THEORY

The geometry to be analyzed is shown in Fig. 1 where
the shaded area, region 1, represents the semi-infinite
lossy region. It extends to x- – co, while region 3 extends

to x++ m. Region 2 is a dielectric slab with a perrmittiv-

ity which differs in general from that of regions 1 and 3.

For a magnetizing field HO taken perpendicular to the

ground planes, the permeability tensor takes the form
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TABLE I

u = angular frequency w= vacuum permeability

(rad/s)

Ho= dc magnetizing field =4~X10-7H/m

(oersteds) ,
AHO = ferrite resonance line width

AHO

(oersteds)
@o= Yo(Ho+J~)

4rM~ = saturation magnetization (+= yo4rrM~

(gauss)

y.= gyromagnetic ratio

= 1.76X 107 rad/(s. Oe)
—@@m

~=—
2

co. —(J

1+X () jK

~=Po 010 .
–Jfc o 1+X

The different parameters involved in this matrix are

listed in Table I.

We restrict our consideration to the lowest order TE

modes. In addition, we will only consider the case of no

variation in the y direction. Under these restrictions, only

three field components result: EY, HX, and Hz.

The electric field component EY satisfies second-order

wave equations in all regions of Fig. 1. In solving these

wave equations we have taken &’f and e – ‘z as the time-

dependent and the propagation factors, respectively. The
propagation constant y = a +jfl has its real and imaginary

parts positive for propagation in the positive z direction.

Thus in each of the four regions of Fig. 1 the solution to

the wave equation is, in gen~ral, of the-form

EY = (C1e Qx+ C2e-QX)~”W’-~z.

The expressions for HX and Hz as a function

readily obtained from Maxwell’s equations.

Application of the boundary conditions will

(1)

of ~~ are

give us a
homogeneous linear system of six equations ii six un-

knowns, i.e.,

[D]-[c]=o (2)

where [D] is a six-by-six matrix whose elements are func-

tions of o and y and [C] is a column vector formed by six

unknown elements equivalent to the constants Ci for the

various regions.

For a nontrivial solution, the determinant of the matrix

of coefficients must vanish, thus giving a transcendental

equation in u and y of the form

F(o, y) = tan k W~

D, (w,y) sin kz W~ + Dz(ti, y) cos kz W~—
D3(Q, y) sin k2 W~ + D~(ti, y) cos kz W~

=0 (3)

where W~ and W~ are the ferrite and dielectric slab

widths, respectively, and

D2(ti, y) =jkp.f~(kl + klL)

#eff<o

1 }’,/ ––– ATTENUATION CONSTANT (a)

~(radlm)
o I I
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Fig. 2. Dispersion characteristics and attenuation constants for differ-
ent modes corresponding to a geometry as in the inset. Forward
propagation. Parameters: 47rM~ = 1760 G, Ho= 200 Oe, AHO = 90 Oe,

u= 1.0 mho/m, WF=10 mm, 9=15, W~=2 mm, c~=4, C,=cd=l.

[( )( k, YK

) –]

klk2
D3(t+Y) ‘j klzpeff+ ~ kzp~ff– ~ ~ + k2

(
D4(0, Y) = kupw + *

)(

yK
— – kl p.ff1+X )

– k2

with

peff=l+x–~
1+X

The following notation has been used.

p=ff= effective ferrite permeability

~, ~= vacuum permittivity and per-

meability, respectively

c{EErelative perrnittivity of the

lossy medium

c ~ conductivity of the 10SSY

medium

cd= relative permittivity of the
semi-infinite dielectric me-

dium (region 3, Fig. 1)

~= ferrite relative permittivity

(D ~ dielectric slab relative per-
mittivity

Taking o as a parameter, the solution y of (3) is ap-

proached by using numerical techniques. The subroutine
ZSYSTM from the IMSL library [20] was employed.

ZSYSTM is designed to solve N simultaneous nonlinear

equations in N unknowns. In our case, N= 2, and the two

equations are the real and imaginary parts of F(u, y) both

equated to zero. The two variables are the real and

imaginary parts of y. The method used by ZSYSTM is

described in [21] and [22].
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Fig. 3. Dispersion characteristics and attenuation constants for the
reverse propagation. Parameters as for Fig. 2.

Once the propagation constant y is obtained from (3),

we use (2) to obtain five of the elements of [C] as a

function of the sixth one which can be assigned any

arbitrary value. We thus obtain the amplitudes of the field

components which may be plotted to allow inspection of

the modal structure.

Summarizing, we have available a computer program

which for a given frequency u, gives propagation con-

stants (y) for particular modes of propagation and plots

the field components as a function of the transverse

coordinate x.

III. RESULTS

Before we begin a detailed discussion of the results,

some general remarks must be made. For this purpose we

will refer to Figs. 2 and 3 which represent, respectively,

the forward and reverse dispersion diagrams—along with

the attenuation constants for each mode for the model

shown in the inset of the figures. The different parameters

involved were defined before and their values are

41TM, = 1760 gauss q= 15

HO= 200 Oe W~=2mm

AHO=90 Oe CD=4

u = 1.0 mho/m q=l

wF=lomm Ed=l.

The values of 47TM, and c,, as well as the bias magneti-

zation given above, were chosen to be the same as in [14],

[15], and [13, part II], so as to allow direct comparison

between the results.

In Fig. 2 we observe the following modes.

1) The waveguide (dynamic) mode which is restricted

to the region between the line whose slopes are the phase

velocity of plane waves in a vacuum (since q = .Ed= 1) and

in a dielectric medium with dielectric constant ~y

2) The surface (magnetostatic) mode, restricted to the

region where pe,f <0.

3) The first higher order mode. (The volume modes,

below the region where P.ff <0, have been neglected.)

The dynamic and magnetostatic modes are char-

acterized by a concentration of the propagated energy in

the vicinity of one or the other face of the ferrite dab.

This is the so-called field displacement effect. For the case

of Fig. 1, in the dynamic mode the energy adheres to the

right-hand side of the ferrite slab as the fields propagate

in the positive z direction. The magnetostatic mode propa-

gates near the opposite face and consequently suffers

attenuation due to the lossy region. The degree of attenua-

tion will depend on the loss parameter. The opposite

effect occurs for propagation in the reverse direction.

Figs. 2 and 3 illustrate this. The forward dynmnic

attenuation constant or insertion loss is very low com-

pared to the attenuations of the surface and first-order

modes. On the contrary, for the reverse propagation the

dynamic attenuation constant or isolation is higher or

comparable to the one corresponding to the magnetostatic

mode in the range of frequencies where they overlap. The

first-order mode attenuation constant is of the same clrder

of magnitude for both forward and reverse propagations.

In contrast with the magnetostatic mode, the dynamic

mode shows the field displacement effect for a much

wider range of frequencies, as has previously been noted

in [ 13]–[ 15]. To utilize fully this property of the dynamic

mode, one must take into account that its effective band-

width is limited above by the onset of the first higher

order mode and below by the onset of the magnetostatic

mode. Thus operation within the range of either of three is

not advisible uniess they are sufficiently attenuated for

both forward and reverse propagation.

For the forward dynamic mode, the fields have basi-

cally the same transverse distribution as in the lossless

case studied in [ 13]–[ 15]. Here, also, the rate of decay of

the fields away from the ferrite and dielectric slabs in-

creases with frequency. The dielectric slab is, in this case,

thin enough so as not to modify substantially the field

distribution from that of a ferrite slab alone. It was also

confirmed that the dynamic-mode structure is “quasi-

TEM with Hz very much smaller than HX for frequencies

up to at least 8 GHz.

The surface (magnetostatic) mode has been discussed in

earlier publications [ 13]–[ 15] and is not materially

changed.

The higher order modes in the lossless case have a

cutoff frequency at the intersection with the line

@= PCO/ ~ in the CJ-P diagram. TO the left Of this line>
no nonradiating modes could exist. However, in the prob-

lem treated here, losses are taken into account, an{i the

dispersion diagrams corresponding to the higher order
modes not oniy continue to the left of the line

u = ~cO/ ~ but also attain a slope greater than the

velocity of light. This is not surprising since, in the case of
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.a lossy medium, the group velocity dti/d~ no longer gives

the velocity of propagation of the energy. Instead, this is

given by the rate of energy flow, determined by the

Poynting vector and divided by the stored energy density

of the wave [23].

The field distributions for the points on the left of the

line a= /?cO/~d are not essentially different from the

ones at the right of this line. But now it can hardly lbe said

that most of the energy propagates within or in the

vicinity of the ferrite and dielectric slabs, for the rate of

decay of the fields in the semi-infinite dielectric region

(region 3) is rather low.

Transverse field distributions for the dynamic and

first-order modes for the case of Figs. 2 and 3 can be

found in [24].

We are now ready to analyze in detail the results

obtained in terms of the effect of each parameter on the

behavior of our model. For the sake of simplicity and

concreteness we have chosen to retain as fixed throughout

this study the saturation magnetization (47M, = 1760 G)

and the dielectric constant (cf = 15) of the ferrite, as well

as the dc magnetizing field (HO= 200 Oe). The effects on

the to-a and u-/3 diagrams produced by each one of the

various parameters involved in this problem will ble dis-

cussed next.

A. The Conductive@ o

When u is high (100 mho/m or more) we observe an

absorption peak in the neighborhood of the frequency

fO + f~, as shown in Fig. 4, where we present the attenua-

tion constants for different values of u, as well as a sample

dispersion curve. Little change is observed in this char-

acteristic as u changes except for the one feature discussed

below.

At f =jO +j~ the real part of the ferrite effective perme-

ability p.ff is zero, and its imaginary part is small and
negative. The wave impedance inside the ferrite slab,

therefore, will become small at this frequency, thus ap-

proaching a short circuit. Hence, near the frequency&+

f~ the magnitude of the electric field in the vicinity of the

ferrite-dielectric interface decreases so that the energy is

now more evenly distributed throughout the ferrite

volume, and, therefore, the effect of the lossy region

becomes dominant. We can expect, then, an increaLse id

the attenuation constant in the vicinity of fO +fw. For a

more detailed discussion of this feature, see [24]. T&
perturbation of the u-~ diagram at j-f. +j~ is due to

computational inaccuracy. This effect occurs only for
c >1000 mho/m.

The results obtained for u >100 mho/m cannot be

considered as useful for the study of a nonreciprocal

device, because of the high forward insertion loss within

the range of utilization of the dynamic mode.

Acceptable results are obtained when u is allowed to

take values between 1 and 10 mho/m because its effect

on the insertion loss for the forward direction is not
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Fig. 4. Dynamic-mode attenuation constant as a function of the
frequency for different values of the conductivity of the 10SSYregion.
Forward propagation. The ti-/3 diagram for the case of u= 1.1x I&’
mho/m is included. Parameters: 47rM, = 1760 G, Ho= 200 Oe, AHO =
90 Oe, ?VF=10 mm, ~= 15, q=cd= 1.

significant. In fact, for frequencies away from the interval

where the absorption peak occurs for high conductivities,

it was observed that the insertion loss is rather indepen-

dent of u. The insertion loss is mostly controlled by the

ferrite linewidth AHO, the dielectric constant of region 2

(the dielectric slab), and the dielectric constant of region 1

(the Iossy region), as will be seen later in this section. In

the reverse direction, the effect of u on the dynamic-mode

attenuation constant dominates [see Figs. 2, 3, and 5, 6].

B. The Ferrite Resonance Linewidth AHO

The linewidth AHO is the loss parameter of the ferrite,

and, therefore, its effect will not depend on the exact

nature of the transverse field distribution. For the reverse

dynamic mode, its effect is to enhance the attenuation
constant (isolation). In the forward direction, it sensibly

controls the insertion loss.

C. Width W~ and Dielectric Constant CD of the Dielectric

Slab (Region 2)

An increase in both or either CD or W~ would lower the

onset of the first higher order mode, thus diminishing the

effective operating band of any device employing the

dynamic mode. On the other hand, an increase in CD
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589

would lower the insertion loss because, in the forward

dynamic mode, more energy is pulled away from the lossy

region towards the dielectric slab thus reducing the in-

fluence of the lossy material.
Although not shown here, varying the width W~ has an

effect on the forward attenuation constant at the lower

end of the band. The case W~ = 2 mm (when W~ ==10

mm) proved to be optimum in the sense of giving an

almost flat attenuation constant curve, as can be seen in

Fig. 2. We also observe that for W~ = O the behavior is

close to the one observed in Fig. 4 at the lower end of the

band. This is so because, as has been mentioned before,

the insertion loss can be considered to be independent of

u for frequencies above and below those for which the

absorption peak occurs.

D. The Ferrite Slab Width W~

Throughout these calculations a slab width of W~ ==10

mm was used. When W~ is reduced, the onset of the first

higher order mode is delayed. On the other hand, the

insertion loss would be increased since the energy, which

for the forward direction is concentrated near the inter-

face opposite to the lossy region, now interacts more

strongly with the lossy region.

E. The Dielectric Constant c1and cd of the Lossy Matt’rial

and Semi-Infinite Dielectric Region (Region 3), respective~

When Cl is low (of order 1), these two parameters do not

have an evident influence on the overall behavior of our

model. When W~ ~0 the arguments with respect to CD

now apply to Cd.
When Cl takes high values, that is, of the order of $Yor

more, it was observed that it exerted a considerable in-

fluence on both the insertion loss and the isolation. Fig. 5

shows that the insertion loss at the upper end of the band

increases because as the frequency increases the energy

shows a tendency to be more evenly distributed

throughout the ferrite (see [ 13]–[ 15], [24]. It can then be

expected that since the high permittivity lossy region will

tend to attract more energy, its effect will be more evident

at the upper end of the band, thus increasing the insertion

loss.
With regard to the isolation, the same reasoning applies,

i.e., a higher q will tend to concentrate the energy near the

lossy region, thus increasing the attenuation. Surprisingly

enough, however, for fixed q, an increase in u causes a

decrease in the isolation and vice versa. This unexpected

behavior is also advantageous, for a lower u will result in

a somewhat lower insertion loss and a higher isolation. It

must be noted, however, that a lower u also lowers the

first-order mode attenuation constant, and, therefore, a

compromise must be attained.

An optimum design of an isolator employing this model

is presented next. We chose Yttrium Garnet G-113 from

Trans-Tech with characteristics very similar to the ones
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used throughout this study:

4vM, = 1780 G

q=15to

AHO =45 Oe.

For this design to be closely related to our foregoing

study, the bias magnetization was taken to be HO= 200 Oe

as before. With these specifications the design was consid-

ered to be optimum in the sense of giving minimum

insertion loss and maximum isolation for the widest

frequency band for the following values of the parameters

involved: W~=7 mm, W~=O, cd= 1, CD= 1, q= 15, u= 1.5

mho/m. The corresponding characteristic diagrams are

shown in Fig. 5 and 6.

We must now assume a length for our hypothetical

isolator, so as to be able to express the isolation and

insertion loss in decibels instead of nepers per meter. The

results presented in this way will allow comparison with

those obtained by other authors. Assume then that the

length is 1=2 cm. Lengths of the same order were em-

ployed, for example, by Hines [2] and Dydyk [19] in their

prototypes.

By examining Fig. 5 we see that due to the influence of

the high q the insertion loss is highest at the upper end of

the band where its value is approximately 0.8 dB/cm. The

forward first-order mode has an attenuation of over 20 dB

(10 dB/cm or 130 Np/m on the graph) for frequencies up

to 10 GHz.

On the other hand, from the reverse characteristic we

observe that at 10 GHz the isolation is approximately 15

dB (85 Np/m or 7.4 dB/cm). It was not possible to find

the first-order mode for the reverse direction, and we can

safely assume that it will be at least as attenuated as is the

case for forward propagation. The magnetostatic mode is,

in turn, not sufficiently attenuated (> 20 dB) except for

frequencies above, approximately, 3 GHz.

Hence, our isolator has the following characteristics:

range 3–10 GHz

bandwidth 1 2/3 octaves

isolation >15 dB
insertion loss <1.6 dB.

Hines, using the same ferrite material for an isolator 1 in

(2.5 cm) long, obtained an insertion loss better than 2 dB

and an isolation greater than 15 dB over a range from 7 to
9.75 GHz, approximately.

Dydyk presents two isolators with different kinds of

dissipative loading for a ferrite of 47rM~ = 1000 G. For his

film loaded (R, =268 fl/sq) component, the experimental

isolation reported is greater than 15 dB while the maxi-

mum insertion loss is 1.7 dB for a band from 2 to 8 GHz

(two octaves). For the bulk-loaded isolator the isolation is

better than 23 dB over two octaves (2–8 GHz) and better

than 15 dB from 2 to 12 GHz. The insertion loss is less

than 2.4 dB in the 2– 12-GHz range.

Forterre et al. report the development of several isola-

tors for different frequency ranges. Two of these operate

in a band nearly equivalent to that of our model. Their

characteristics are, for the first one (4nM, = 1000 G):

range 2– 10 GHz, insertion loss< 1.5 dB, isolation> 15

dB; and for the second one (47rM, = 1780 G): range 3.5-

14 GHz, insertion loss< 1.0 dB, isolation> 20 dB.

In comparing these experimental results with ours, it

must be remembered that a ferrite with a much lower

resonance linewidth would give a lower forward insertion

loss. The first of the prototypes above employs a ferrite

with a linewidth of 5 Oe, whereas the value used in our

optimization was 45 Oe. Yet, the insertion loss measured

is close to that of our calculated result which, besides,

neglected copper loss.

With regard to the work described by Forterre et al.,

some differences were found between the dispersion dia-

gram given in [17] and those that appear here which

deserve comment. For the forward dynamic mode, they

observe that it has a cutoff at the intersection with the line

a = ~co, whereas in the case of our work we have seen that

the dynamic mode is always a zero cutoff mode. The

reason for this is that Courtois’ model considers a vertical

perfect magnetic wall at the edge of the conducting strip,

which causes the dynamic mode to have a cutoff at

j =~-. (See [5]-[7].)
The u-~ diagram presented in [17] also shows a cutoff

for the first-order mode at the intersection with the line

w = &O, even though the problem studied takes losses into

account. However, it has become clear from our results

that the higher order modes may extend into the region to

the left of this line when losses are introduced. The

extremely high loss in this region will quench these modes

quite effectively, and, therefore, they cannot play a signifi-

cantt role.

IV. CONCLUSION

The results of a detailed study of the modal spectrum

for a configuration modeling the inhomogeneously

ferrite-loaded stripline, subjected to a magnetizing field

directed normal to the ground planes, have been pre-

sented. A four-region model consisting of a slab of ferrite

between two infinite perfectly conducting planes loaded

with both a semiinfinite Iossy material and a dielectric

slab at opposite faces was treated.

A detailed study on how the various parameters in-

volved affect the behavior of the model was conducted.
The model has been shown to be qualitatively as well as

quantitatively in good agreement with experimental re-

sults of isolators developed by Hines, Dydyk, and

Courtois.

In comparing our results with those of Forterre et al.

reported in [17], we have pointed out the differences

between the two models. It has become clear that, due to

the presence of loss mechanisms, the higher order modes

extend to the left of the line u = @O/% and do not have

a cutoff at the intersection with this line.
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More detailed studies would require the inclusion of the

fringing fields in our modeling of the homogeneously and

inhomogeneously ferrite-loaded striplines (Belle [ 13] and

deSantis [25]) as well as possibly the conductor losses.

Conductor losses have previously been considered by

Courtois [16], [17]. In addition, our program allows the

obtaining of data concerning nonreciprocal phase shifters

by suitably modifying the geometric configurations con-

sidered here.
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